DIASCA
Interview Results and Hypotheses

September 2022
To reach interoperability in integration digital agricultural supply chains primarily data related issues have to be solved, e.g. data quality / availability, data sharing and willingness to share, data standardization, structural problems in different countries.
To what extent do you think data sharing for traceability can reduce cost?

- 37.50% (9) high
- 45.83% (11) medium
- 16.67% (4) low
From your point of view, how could you create progress for farmers through implementing traceability?
How do you deal with (lack of) interoperability (when it comes to a great variety of IT-solutions)?
How can you support supply chain actors in better data transfer and integrated data sharing?

- Align on a common language and methodology for data exchange: 91.67% (22)
- Give incentives to different parties to share data: 37.50% (9)
- Build an own traceability solution: 33.33% (8)
- Participate as member in a democratic trusted data ecosystem: 66.67% (16)
- Improvement of data quality: 58.33% (14)
- Other - which?: 12.50% (3)
To which extent are data exchange, sustainability and product quality interrelated?
Do you prefer collaboration towards an Open Source or rather a commercial, fully-served solution?
Master Questions

I. How would you define what is meant with "traceability" for your role in the supply chain? (Questions 8, 10, 12, 13, 15)

II. Can you imagine how farmers can benefit from traceability based on open standards? (Questions 2, 3, 7, 14)

III. To what extent would you recommend the harmonization (regulation) of national requirements of traceability in the global discussion? (Questions 4, 9, 12)

IV. How can technical enablement be provided? (1, 15, 16, 19)
How would you define what is meant with "traceability" for your role in the supply chain?

Summary of Statements

- Integration of all stakeholders:
 - Regulators, NGOs
 - Workers' associations,
 - All supply chain actors, (e.g., 12,000 supply chain organisations), ...
- Critical Tracking Events and Key Data elements to be defined, can differ per product type
- Consideration of geo-references and other due-diligence parameters + certificates
- Interrelation between data exchange (--> traceability), sustainability and product quality
- Education and support of suppliers is vital
- Use of global standards

Derived Hypothesis:
Traceability building on global and interoperable standards is a necessary precursor to understanding the issues in a particular supply chain, including deforestation, labor abuses, etc.
Can you imagine how farmers can benefit from traceability based on open standards?

Summary of Statements

• To benefit farmers it should be aimed for win-win situations among supply chain partners.
• It makes processes more efficient, simpler and quality of data more trustworthy
• Besides benefitting from own traceability data farmers could also benefit from traceability data of customers (better understand customer's needs)
• This all could lead to better price negotiation opportunities as well as better market access and new customers

Derived Hypothesis:
By implementing existing open global standards in the agricultural sector should achieve interoperability of sustainability data, many stakeholders including farmers, manufacturers, brands and policymakers can benefit several times and at various stages.
To what extent would you recommend the harmonization (regulation) of national requirements of traceability in the global discussion?

Summary of Statements
- Legislators to set the framework (outcome, aim), industry to set the standards
- Driver should be global organizations
- International trade agreements are helpful for harmonization efforts

Derived Hypothesis:
Legislation, e.g. by large markets like the EU and the legislative proposal on deforestation-free supply chains, is desired to create conditions of competition and define the basic requirements, but remain technology agnostic.
How can technical enablement be provided?

Summary of Statements

• Systems must be able to talk to each others:
 • Global standards for identification and data sharing / use of GS1 Standards
 • Identification of the parties, products, supplies, locations, processes, people who carry out the process, dates, quantities, satellite images
 • Global mapping / definition of Critical Tracking Events and Key Data Elements
 • Agree on interfaces / possibility to use of different software solutions / digital twin
 • Education, easy-to-use and easy access, trustworthy solution

Derived Hypothesis:
Alignment on data elements per product class builds the basis of both critical tracking events (CTE) and key data elements (KDE); thus defines focus to bring forward the technical enablement of the stakeholders.
Master Question II

<table>
<thead>
<tr>
<th>Master Question II</th>
<th>Can you imagine how farmers can benefit from traceability based on open standards?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Survey Questions</td>
<td>2, 3, 7, 14</td>
</tr>
</tbody>
</table>
| Summary of Statements | • To benefit farmers it should be aimed for win-win situations among supply chain partners.
• It makes processes more efficient, simpler and quality of data more trustworthy
• Besides benefitting from own traceability data farmers could also benefit from traceability data of customers (better understand customer's needs)
• This all could lead to better price negotiation opportunities as well as better market access and new customers |
| Derivated Hypothesis | By implementing existing open global standards in the agricultural sector should achieve interoperability of sustainability data, many stakeholders including farmers, manufacturers, brands and policymakers can benefit several times and at various stages. |
Master Question III

<table>
<thead>
<tr>
<th>Master Question III</th>
<th>To what extent would you recommend the harmonization (regulation) of national requirements of traceability in the global discussion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Survey Questions</td>
<td>4, 9, 12</td>
</tr>
</tbody>
</table>
| Summary of Statements | • Legislators to set the framework (outcome, aim), industry to set the standards
• Driver should be global organizations
• International trade agreements are helpful for harmonization efforts |
<p>| Derivated Hypothesis | Legislation, e.g. by large markets like the EU and the legislative proposal on deforestation-free supply chains, is desired to create conditions of competition and define the basic requirements, but remain technology agnostic. |</p>
<table>
<thead>
<tr>
<th>Master Question IV</th>
<th>How can technical enablement be provided?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Survey Questions</td>
<td>1, 15, 16, 19</td>
</tr>
</tbody>
</table>
| Summary of Statements | • Systems must be able to talk to each others:
 • Global standards for identification and data sharing / use of GS1 Standards
 • Identification of the parties, products, supplies, locations, processes, people who carry out the process, dates, quantities, satellite images
 • Global mapping / definition of Critical Tracking Events and Key Data Elements
 • Agree on interfaces / possibility to use of different software solutions / digital twin
 • Education, easy-to-use and easy access, trustworthy solution |
| Derivated Hypothesis | Alignment on data elements per product class builds the basis of both critical tracking events (CTE) and key data elements (KDE); thus defines focus to bring forward the technical enablement of the stakeholders. |
diasca@giz.de